
[引言]中考总复习教案数学【精品多篇】为网友投稿推荐,但愿对你的学习工作带来帮助。
中考总复习教案数学 篇一教学目标:使学生掌握相似三角形的判定与性质
教学重点:相似三角形的判定与性质
教学过程:
一 知识要点:
1、相似形、成比例线段、黄金分割
相似形:形状相同、大小不一定相同的图形。特例:全等形。
相似形的识别:对应边成比例,对应角相等。
成比例线段(简称比例线段):对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618.。.。这种分割称为黄金分割,点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
例1:(1)放大镜下的图形和原来的图形相似吗?
(2)哈哈镜中的形象与你本人相似吗?
(3)你能举出生活中的一些相似形的例子吗/
例2:判断下列各组长度的线段是否成比例:
(1)2厘米,3厘米,4厘米,1厘米
(2)1·5厘米,2·5厘米,4·5厘米,6·5厘米
(3)1·1厘米,2·2厘米,3·3厘米,4·4厘米
(4)1厘米, 2厘米,2厘米,4厘米。
例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋?
例4:等腰三角形都相似吗?
矩形都相似吗?
正方形都相似吗?
2、相似形三角形的判断:
a两角对应相等
b两边对应成比例且夹角相等
c三边对应成比例
3、相似形三角形的性质:
a对应角相等
b对应边成比例
中考总复习教案数学 篇二对称、平移、旋转、视图与投影
一、图形的对称
1、知识梳理
1、轴对称及轴对称图形的意义
(1) 轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直
线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
(2) 如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称
图形,这条直线叫做对称轴。
(3) 轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点
所连的线段被对称轴垂直平分。
(4) 简单的轴对称图形:① 线段:有两条对称轴:线段所在直线和线段中垂线。 ②角:有一条对称轴:该角的平分线所在的直线。
③等腰(非等边)三角形:有一条对称轴,底边中垂线。 ④等边三角形:有三条对称轴:每条边的中垂线。 2. 中心对称图形
○
(1)定义:在平面内,一个图形绕某个点旋转180 ,如果旋转前后的图形互相重合,那么这个图
形叫做中心对称图形,这个点叫做它的对称中心。
(2)性质:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
o
(3)中心对称与旋转对称的关系:中心对称是旋转角是180的旋转对称。
(4)中心对称的判定:如果两个点的连线被某一点M平分,则这两个点关于点M成中心对称。
2、课前练习
1、如右图,既是轴对称图形,又是中心对称图形的是( )
2、下列图形中对称轴最多的是( )
A.圆B.正方形C.等腰三角形D.线段 3. 数字______在镜中看作
4、如右图的图案是我国几家银行标志,其中轴对称图形有( )
A.l个 B.2个 C.3个 D.4个
5、4张扑克牌如⑴所示放在桌子上小敏把其中一张旋转180° 后得到如图⑵所示,那么她所旋转的牌从左数起是 ( )
3、经典考题剖析
1、如图,已知直线1⊥2,垂足为O,作线段PM关于直线1、和M2P2关于点O成中心对称。
2
的对称线段M1P1、M2P2 ,并说明M1P1
1 / 9
2、如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判断方法是______
3、如图,将标号为A、B、C、D的正方形沿图中的虚线剪开后得到标号为P、Q、M、N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系, 填空: A与_____对应, B与______对应,
C与___ _对应, D与______对应。
4、如图所示图案中有且只有三条对称轴的是( )
5、已知四边形ABCD和AB的中点O,求作四边形ABCD关于点O的对称图形。
4、课后训练
1、如图是四幅美丽的图案,其中既是轴对称图形又是中心对称图形的个数是( )
A.1个 B.2个 C.3个 D.4个
2、若图形关于某一条直线对称,则连结相应两对称点的线段必被对称轴________.
3、如图,由正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是(
4、下列说法中,正确的是( )
A.等腰梯形既是中心对称图形又是轴对称图形 B.正方形的对角线互相垂直平分且相等 C.矩形是轴对称图形且有四条对称轴 D.菱形的对角线相等
5、在右图中,既是轴对称图形,又是中心对称图形的是( )
2 / 9
)6. 字母A,B,C,D,E,F,S,X,Y,Z中,是轴对称图形的有_______个。
7、某学校搞绿化,计划在一矩形空地上建一个花坛,现征集设计方案,要求设计的图案由圆和正方形组成(个数不限)并使矩形场地成轴对称图形,请你试试看。
8、已知四边形ABCD,如图,求作四边形 ABCD关于点A的对称图形。
9、如图,请在ABCDE中,以线段DE所在的直线为对称轴,画出它的轴对称图形。
10、小明发现:如果将4棵树栽于正方形的四个顶点上,如图⑴所示,恰好构成一轴对称图形。你还能找到其他两种栽树的方法,也使其组成一个轴对称图形吗?请在图⑵、⑶上表示出来。如果是栽5棵,又如何呢?6棵、7棵呢?请分别在⑷、⑸、⑹上表示出来。
二、图形的 ……此处隐藏3665个字……个 C.3个 D.4个
2、若图形关于某一条直线对称,则连结相应两对称点的线段必被对称轴________.
3、如图,由 正三角形和正方形拼成的图形中是轴对称图形而不是中心对称图形的是( )
4、下列说法中,正确的是( )
A.等腰梯形既是中心对称图形又是轴对称图形
B.正方形的对角线互相垂直平分且相等
C.矩形是轴对称图形且有四条对称轴
D.菱形的对角线相等
5、在右图中,既是轴对称图形,又是中心对称图形的是( )
6、字母A,B,C,D,E,F,S,X,Y,Z中,是轴对称图形的有_______个。
7、某学校搞绿化,计划在一矩形空地上建一个花坛,现征集设计方案,要求设计的图案由圆和正方形组成(个数不限)并使矩形场地成轴对称图形,请你试试看。
8、小明发现:如果将4棵树栽于正方形的四个顶点上,如图⑴所示,恰好构成一轴对称图形。你还能找到其他两种栽树的方法,也使其组成一个轴对称图形吗?请在图⑵、⑶上表示出来。如果是栽5棵,又如何呢?6棵、7棵呢?请分别在⑷、⑸、⑹上表示出来。
中考总复习教案数学 篇四教学目标
1、使学生能说出有理数大小的比较法则
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号“”“∵”“∴”写出表示推理过程中简单的因果关系。
三、教学重点与难点
重点:运用法则借助数轴比较两个有理数的大小。
难点:利用绝对值概念比较两个负分数的大小。
四、教学准备
多媒体课件
五、教学设计
(一)交流对话,探究新知
1、说一说
(多媒体显示)某一天我们5个城市的最低气温 从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。
比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”)
广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。
2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?
(3)温度的高低与相应的数在数轴上的位置有什么?
(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:
在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
(二)应用新知,体验成功
1、练一练(师生共同完成例1后,学生完成随堂练习1)
例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用“
分析:本题意有几层含义?应分几步?
要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。
随堂练习: P19 T1
2、做一做
(1)在数轴上表示下列各对数,并比较它们的大小
①2和7 ②-6和-1 ③-6和-36 ④-和-1.5
(2)求出图中各对数的绝对值,并比较它们的大小。
(3)由①、②从中你发现了什么?
(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)
要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
在学生讨论的基础上,由学生总结得出有理数大小的比较法则。
(1)正数都大于零,负数都小于零,正数大于负数。
(2)两个正数比较大小,绝对值大的数大。
(3)两个负数比较大小,绝对值大的数反而小。
3、师生共同完成例2后,学生完成随堂练习2、3、4。
例2比较下列每对数的大小,并说明理由:(师生共同完成)
(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|
分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。
注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。
两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。
思考:还有别的方法吗?(分组讨论,积极思考)
4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?
由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。
练一练:P19 T2、3、4
5、考考你:请你回答下列问题:
(1)有没有的有理数,有没有最小的有理数,为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来?
(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。
(4)若a>0,b<0,a
(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)
6、议一议,谈谈本节课你有哪些收获
(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用“”)连接,这种方法在比较多个有理数大小时非常简便。
六、布置作业:P19 A组、B组
基础好的A、B两组都做
基础较差的同学选做A组。
你也可以在搜索更多本站小编为你整理的其他中考总复习教案数学【精品多篇】范文。
文档为doc格式