当前位置:首页 > 教学资源

简易方程教学设计【精彩多篇】

时间:2025-08-16 08:53:20
简易方程教学设计【精彩多篇】

[导语]简易方程教学设计【精彩多篇】为网友投稿推荐,但愿对你的学习工作带来帮助。

简易方程教学设计 篇一

教材第73页例1、“做一做”和练习十六的第2~4题。

1、使学生掌握列方程解决实际问题的基本方法和步骤。

2、找出题中数量间相等的关系,根据等量关系正确地列出方程并解答。

3、培养学生从问题出发去寻找所需条件的分析能力。

1、根据等量关系正确地列出方程并解答。

2、找出题中数量间相等的关系,根据等量关系正确地列出方程。

多媒体课件。

1、用方程表示下列各题的数量关系,并填在横线上:

(1)x的2倍与3、5的和是7、3:

(2)从30里减去x的1、5倍,差是18:

(3)一个数的6倍减去35,差是13:

学生先讨论后尝试找出题中的数量关系,列出等量关系式,学生独立完成后相互交流。

2、解方程。

x+5、7=10 3x-6=18 2(x+2、5)=5

三名学生板演,并交流解答过程。

3、导入新课:出示学校运动会跳远比赛的情景图片,大家能提出什么有价值的问题呢?

学生自由讨论后汇报交流。

那么这节课我们一起来学习利用方程解决实际问题。

出示课题,引入新课并板书。

1、教学例1。

(1)出示例1情景图。

这是一次学校运动会的情景,小明进行跳远比赛的场景,大家看:小明的跳远成绩是4、21m,超过学校的原纪录0、06m,学校原跳远纪录是多少米?

(2)找等量关系。

课件演示小明的跳远成绩、学校原跳远纪录及其关系。

提问:你能根据演示说明,说出小明的跳远成绩、学校原跳远纪录和超出成绩的关系吗?

根据学生回答,板书:

a、小明跳远的成绩-超过的成绩=学校原跳远纪录

b、学校原跳远纪录+超过的成绩=小明跳远的成绩

c、小明跳远的成绩-学校原跳远纪录=超过的成绩

(3)探究方法。

提问:你能试着用自己想到的方法解答吗?

学生汇报算术方法:4、21-0、06=4、15(m)

师:谁还能用其他的方法来解答这道题?如果设学校原跳远纪录为x米,那么根据上面分析得出的等量关系,怎样列方程?

学生尝试解答,并请学生汇报自己的解答过程。

教师板书:

解:设学校原跳远纪录为x米,

由学校原跳远纪录+超过的成绩=小明跳远的成绩

x+0、06=4、21

x+0、06-0、06=4、21-0、06

x=4、15

学生解答后,验证解答方法是否正确。

教师小结:根据不同的等量关系,可以列出不同的方程,一般来说,同一等量关系,用加法比用减法表示更容易思考。

(4)师生共同小结:用方程解决实际问题的步骤。

师:用方程解决实际问题需要注意什么?

小组交流并汇报,教师引导学生总结出用方程解决实际问题的方法、策略、步骤。

①审清题意,找出未知数,用x表示;

②找出等量关系,并列出方程;

③解方程;

④验算。

2、典例讲析。

例:修一条长240km的高速铁路,还剩42km没有修,已经修了多少千米?

分析:此题要求修一条长240km的高速铁路,现在还剩42km没有修,求已经修了多少千米,它们之间的关系为已修+剩下的=总长。我们可以设已经修的为x千米,再依关系式列方程。

解:设已经修了x千米。

x+42=240

x=198

检验:把x=198代入原方程,方程左边=198+42=240=方程右边

所以x=198是原方程的解。

答:已经修了198km。

完成课本第73页“做一做”。

让学生先说出题目的等量关系,再列方程解答。

分析:(1)要求去年的身高是多少,已知今年的身高是1、53m,比去年长高了200px,它们之间的关系是去年的身高+长高的=今年的身高。

(2)每分钟的滴水量、半小时(即30分钟)及半小时滴水量1、8kg之间的等量关系表示为:每分钟滴水量×30=半小时滴水量。

答案:(1)解:设小明去年身高xm。

200px=0、08m

x+0、08=1、53

x+0、08-0、08=1、53-0、08

x=1、46

经检验x=1、46是原方程的解。

答:小明去年身高是1、46米。

(2)解:设水龙头每分钟浪费水x克。

1、8kg=1800g

30x=1800

30x÷30=1800÷30

x=60

提问:应该怎样验算?

学生口述验算过程。

答:水龙头每分钟浪费水60克。

提问:同学们,通过这节课的学习,你知道列方程解决实际问题的解题步骤了吗?还有什么疑惑?

小结:用方程解决实际问题的步骤:

①审清题意,找出已知与未知数,未知数用x表示;

②找出题中的等量关系,并列出方程;

③解方程;

④检验并写出答案。

1、完成教材第75页练习十六第2~4题。

第7课时实际问题与方程(1)

例1:

等量关系:

a、小明跳远的成绩—超过的成绩=学校原跳远纪录

b、学校原跳远纪录+超过的成绩=小明跳远的成绩

c、小明跳远的成绩-学校原跳远纪录=超过的成绩

列方程解答:

解:设学校原跳远纪录为x米。

由学校原跳远纪录+超过的成绩=小明跳远的成绩

x+0、06=4、21

x+0、06-0、06=4、21-0、06

x=4、15

答:学校原跳远纪录为4、15米。

用方程解决实际问题的步骤:

①审清题意,找出已知与未知数,未知数用x表示;

②找出题中的等量关系,并列出方程;

③解方程;

④检验并写出答案。

简易方程教学设计 篇二

(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

(3)结合教学,培养学生 ……此处隐藏2797个字……>1.将主题图中的“我家今年共种了12.5亩的草和树”改为“我家今年种的草比树多2.5亩”。

让学生编题,鼓励学生积极思考,分析数量关系。同伴之间进行讨论和交流,画出线段图进行解决,然后组织全班交流,学习解题方法和步骤。

2.比较两题的异同,引导学生在理解的基础上掌握“和倍”、“差倍”问题的一般解法。

2.数学小博士。

一个长方形的长是宽的1.8倍,它的周长是56厘米。这个长方形的面积是多少平方厘米?

六。全课总结。

引导学生回顾全课,总结本节课解决问题的特点,解决问题的方法和步骤,强调怎样设未知数,要求先分析数量关系再进行解答。

七。布置作业。

一、教材的处理

数学来源于生活,生活中处处有数学。课前设计中,我紧密联系学生的生活实际,创设了“种草种树”的教学情境,让学生在这一情境中不但学习了新知,而且开阔了眼界,丰富了教学内容。紧接着,通过对教材例题的自学和练习,进一步巩固上面学到的方法。然后,改变情境图中的一个条件,启发学生继续学习,学生在前面学习的基础上,学会运用迁移类推的方法,通过思考、交流、分析、解答,获得了解决这类问题的方法。又经过比较,使学生清楚地认识到两道题的联系与区别,提高辨别能力和解决问题的能力。

二、本节课目标完成情况。

在教学过程中,我紧紧围绕课前预设的三维目标实施教与学的双边活动,从教学实施的过程来看,基本上达到了预期的目标。大多数学生掌握了稍复杂问题的解决方法,尽管有些学生会做还不会说,大部分学生能够有根据、有步骤地解决问题。在学生学习的过程中,我能不断评价鼓励学生,使学生既掌握了知识,发展了能力,又使学生体验到了数学在生活中的应用,尝到了成功的快乐。

三、课件的应用。

解决问题,就是要解决生活中的问题。因此本节课上我用多媒体课件出示情境,把学生带入了一个个活生生的场面,使学生产生主动探究的愿望,培养了自主探索的精神,提高了自主探索的能力,发挥了多媒体课件在解决问题教学中的辅助作用。

四、教学中的不足。

1.课前复习时说的过细,学生弄清楚了这样做的道理,但费时较多,占用了后面的教学时间,致使教学过程前松后紧,练习部分处理得较为仓促,学生学会了“和倍”问题的解决方法,“差倍”问题掌握的同学不多。

2.解方程练的较少,中、下学生没有熟练掌握解方程的一般方法,制约了学生进一步的学习,也影响了教学进度。

3.因为多媒体的原因,使学生上课后不能立刻进行学习,耽误了几分钟的学习时间,同时影响了教学的顺利进行。

总之,教学是一项长期的工作,培养学生的各方面能力也要通过长期不懈的努力,只有这样,才能使学生牢固地掌握知识,逐步形成一些技能技巧,最终能够运用所学到的知识解决生活中的问题,才能完成自己的教学任务。

简易方程教学设计 篇六

数学书p58-p59及“做一做”,练习十一第5-7题。

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

掌握解方程的方法。

一、导入新课

二、新知学习

(一) 教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,即得: x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3=6+3=9=方程右边

所以, x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二) 教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

(三) 反馈练习

1、完成“做一做”的第1题。

2、试着解方程:x-2.4=6 x÷9=0.7 (强调验算)

三、课堂小结。

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

四、作业:练习十一5—7题。

解方程教学反思

在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。

1、在具体情境中理解算理,经历代数的过程。

本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时减去相同的数是本节课的重点。我通过创设情境,让学生来领悟算理,突显出本节课的重点。

2、在直观操作中掌握方法,发展数学素养。

在本节课中,通过充分的直观,利用学生熟悉的素材,力图把方程建构于天平之中,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的操作解释、验证中发展学生的数学素养。

3、困惑:纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?

你也可以在搜索更多本站小编为你整理的其他简易方程教学设计【精彩多篇】范文。

《简易方程教学设计【精彩多篇】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式